THERMODYNAMIC PROPERTIES OF THE TERNARY SYSTEM MTBE+1-PROPANOL+HEXANE Application of different group contribution models and empirical methods

M. M. Mato¹, S. M. Cebreiro², P. V. Verdes², J. L. Legido¹ and M. I. Paz Andrade^{2*}

¹Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, 36200 Vigo, Spain
 ²Departamento de Física Aplicada, Facultad de Físicas, Campus Sur, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Experimental excess molar enthalpies and excess molar volumes of the ternary system $x_1MTBE+x_21$ -propanol+ $(1-x_1-x_2)$ hexane and the involved binary mixtures have been determined at 298.15 K and atmospheric pressure. Excess molar enthalpies were measured using a standard Calvet microcalorimeter, and excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter. The UNIFAC group contribution model (in the versions of Larsen *et al.*, and Gmehling *et al.*) has been employed to estimate excess enthalpies values. Several empirical expressions for estimating ternary properties from experimental binary results were applied.

Keywords: empirical expressions, excess molar enthalpies, excess molar volumes, hexane, 1-propanol, ternary mixture, tert-butyl methyl ether (MTBE), UNIFAC group contribution model

Introduction

Forming part of the scientific project entitled 'Study on physical properties of mixtures hydrocarbon+alcohol +ether like alternative fuels', the present article reports experimental excess molar enthalpies and excess molar volumes for the ternary system x_1 MTBE+ x_2 1-propanol + x_3 hexane and the involved binary mixtures at 298.15 K and atmospheric pressure. The excess molar enthalpies for the binary mixture *x*MTBE+(1-x)1-propanol and the excess molar volumes for the binary mixture *x*MTBE+(1-x)hexane were reported in earlier works [1, 2].

Excess molar enthalpies were measured using a standard Calvet microcalorimeter, and excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter. Attending to the symmetry of the studied mixtures, suitable fitting equations have been used in order to correlate adequately the experimental data.

The UNIFAC group contribution model (in the versions of Larsen *et al.* [3], and Gmehling *et al.* [4]) has been employed to estimate excess molar enthalpies. Several empirical expressions were also applied to estimate ternary properties from binary results.

Experimental

The chemical substances employed, MTBE, 1propanol, hexane were degassed by ultrasound and dried over molecular sieves (Sigma, type 0.4 nm). The measured densities of the pure liquids displayed good agreement with previously published values [5–7], as shown in Table 1. The handling and disposal of the chemicals used has been done according to the recommendation of the CRC Handbook of Chemistry and Physics [5].

Table 1 Source, purity and densities of chemicals used

Call at an an	C	December 2/0/	Density/g mL ⁻¹			
Substances	Source	Purity/%	exp.	references		
MTBE	Aldrich	>99.8	0.7356	0.73528^{a} 0.7359^{b}		
1-propanol	Aldrich	>99.5	0.7997	0.79975 ^a 0.7995 ^c		
hexane	Fluka	≥99.5	0.6550	0.6606 ^a 0.6551 ^c		

^a[5], ^b[6], ^c[7].

The experimental excess molar enthalpies were measured using a Calvet microcalorimeter equipped with a device allowing operation in the absence of vapour phase, and having a calorimeter-cell volume of approximately 10 mL. A Philips PM2535 voltmeter and a data acquisition system were linked to the microcalorimeter. Calibration was performed electrically using a Setaram EJP30 stabilised current source. Further details about the experimental method of operation have been published [8, 9].

^{*} Author for correspondence: fapazand@usc.es

Excess molar volumes were determined from the densities of the pure liquids and mixtures. The measurements of densities were carried out with an DMA 4500 Anton Paar densimeter. The temperature inside the vibrating-tube cell was controlled using digital thermometer and was regulated to better than ± 0.01 K. The experimental technique has been described previously [10, 11]. The uncertainty in density measurements was $\pm 5 \cdot 10^{-5}$ g mL⁻¹. Before each series of measurements, the apparatus was calibrated at atmospheric pressure using double-distilled and degassed water and heptane (Fluka >0.995); density data were taken from literature: [12] for heptane and [13] for water. The mixtures were prepared by mass using a Mettler AT201 (precision $\pm 1.10^{-5}$ g) balance, ensuring an accuracy in the mole fraction less than 10^{-4} . All molar quantities are based on the IUPAC relative atomic mass table [14].

Several experimental series of measurements were carried out for the ternary compositions resulting from adding hexane to a binary mixture composed of $x'_1MTBE+x'_21$ -propanol, where $x'_2=1-x'_1$. The ternary composition point is then a pseudobinary mixture composed of hexane and the mentioned binary mixture. Thus, the ternary excess molar enthalpy can be expressed as

$$H_{m,123}^{E} = H_{m,\phi}^{E} + (x_1 + x_2)H_{m,12}^{E}$$
(1)

where $H_{m,\phi}^{E}$ is the measured excess molar enthalpy for the pseudobinary mixture and $H_{m,12}^{E}$ is the excess molar enthalpy of the initial binary x_1' MTBE+ x_2' 1-propanol. Values of $H_{m,12}^{E}$ at three mole fractions were interpolated by using a spline-fit method. Equation (1) does not involve any approximation.

The excess molar volumes were calculated from the densities of the pure liquids and their mixtures using following equation

$$V_{m,123}^{E} = \sum_{i=1}^{n} x_{i} M_{i} (\rho^{-1} - \rho_{i}^{-1})$$
 (2)

with *x*, *M* and ρ being mole fraction, molar mass, and density, respectively; *n* is the number of the components in the mixture and the subscript *i* indicates values for the pure components.

Experimental values for the binary mixtures measured in this work are listed in Table 2. The excess molar enthalpies for the binary mixture *x*MTBE +(1-x)1-propanol were reported in an earlier paper [1] and the excess molar volumes for *x*MTBE +(1-x)hexane were taken from [2].

Experimental values of ternary excess molar enthalpies, $H_{m,123}^{E}$ and ternary excess molar volumes, $V_{m,123}^{E}$, for the ternary system x_1 MTBE+ x_2 1-propanol +(1- x_1 - x_2)hexane are listed in Table 3.

Data correlation

The experimental data corresponding to the binary mixtures xMTBE+(1-x)1-propanol, xMTBE+(1-x)hexane were fitted to the variable-degree polynomials suggested by Redlich-Kister [15],

Table 2 Experimental binary excess molar enthalpies, H_m^E , and excess molar volumes, V_m^E , and densities, ρ , at 298.15 K

x	$H_{\rm m}^{\rm E}$ /J mol ⁻¹	x	$x H_{\rm m}^{\rm E}/{ m J}~{ m mol}^{-1}$		x	$H_{\mathrm{m}}^{\mathrm{E}}$ /J mol ⁻¹	x	$H_{\rm m}^{\rm E}$ /J mol ⁻¹	
			xN	ATBE+(1-x)h	iexane				
0.0527	61.0	0.2668	3	04.9	0.5142	380.3	0.8361	209.0	
0.1125	146.2	0.3262	3	41.5	0.5827	372.9	0.9066	127.2	
0.1191	151.1	0.3985	3	68.7	0.6520	340.5	0.9551	66.5	
0.1837	224.2	0.4549	3	83.4	0.7215	305.9			
0.2577	297.8	0.4648	3	80.6	0.7818	256.6			
x1-propanol+ $(1-x)$ hexane									
0.0987	461.6	0.4342	5	73.2	0.6835	425.3	0.8841	181.5	
0.1984	579.3	0.5034	542.3		0.7510	351.0	0.8913	173.3	
0.2684	598.5	0.5702	5	04.9	0.7967	299.5	0.9326	114.2	
0.3635	594.3	0.6427	4	62.2	0.8418	236.7	0.9659	59.9	
x	$\rho/g \; mL^{-1}$	$V_{\rm m}^{\rm E}$ /mL mol ⁻¹	$x ho/g mL^{-1}$		$V_{\rm m}^{\rm E}$ /mL mol ⁻¹	x	$\rho/g \; mL^{-1}$	$V_{\rm m}^{\rm E}$ /mL mol ⁻¹	
			xMT	FBE+(1−x)1-p	propanol				
0.0543	0.79576	-0.1433	0.3987	0.77199	-0.6318	0.7856	0.74816	-0.4701	
0.1065	0.79198	-0.2560	0.4914	0.76591	-0.6454	0.8957	0.74174	-0.2754	
0.1912	0.78604	-0.4156	0.5967	0.75957	-0.6409	0.9446	0.73888	-0.1593	
0.2932	0.77896	-0.5425	0.6916	0.75375	-0.5831				
x1-propanol+ $(1-x)$ hexane									
0.0487	0.65847	0.1247	0.4025	0.69380	0.2069	0.7983	0.75489	0.0455	
0.0972	0.66243	0.1807	0.4988	0.70625	0.1669	0.9004	0.77602	0.0175	
0.1953	0.67135	0.2267	0.6032	0.72136	0.1182	0.9497	0.78734	0.0052	
0.2901	0.68100	0.2326	0.6997	0.73697	0.0798				

<i>x</i> ₁	<i>x</i> ₂	$H_{\mathrm{m,\phi}}^{\mathrm{E}}$ /J mol ⁻¹	$H_{\rm m,123}^{\rm E} / { m J} { m mol}^{-1}$	x_1	<i>x</i> ₂	$H_{\mathrm{m,\phi}}^{\mathrm{E}}$ /J mol ⁻¹	$H_{\rm m,123}^{\rm E}/{ m J}{ m mol}^{-1}$			
			$x_1'=0.2504, H$	$I_{m,12}^{E} = 359.7 \text{ J m}$	ol^{-1}					
0.0441	0.1320	482.8	546.2	0.1673	0.5007	446.0	686.2			
0.0679	0.2032	535.6	633.1	0.1814	0.5430	406.5	667.1			
0.0833	0.2493	557.7	677.3	0.1948	0.5832	366.4	646.3			
0.1026	0.3070	551.5	698.9	0.2067	0.6185	298.7	595.5			
0.1193	0.3572	543.6	715.0	0.2192	0.6561	238.4	553.3			
0.1340	0.4011	517.0	709.5	0.2294	0.6865	165.8	495.2			
0.1528	0.4574	476.7	696.2	0.2400	0.7183	81.6	426.3			
			<i>x</i> ₁ '=0.5017, <i>H</i>	$I_{m,12}^{E} = 557.0 \text{ J m}$	ol ⁻¹					
0.0423	0.0420	247.2	294.1	0.2663	0.2646	544.8	840.5			
0.0801	0.0796	382.2	471.2	0.3189	0.3168	492.7	855.4			
0.0991	0.0984	412.7	522.7	0.3489	0.3466	448.4	835.8			
0 1161	0 1154	462.2	591.2	0 3779	0 3754	396.5	816.1			
0 1642	0.1631	528.3	710.6	0 4049	0.4022	323.4	789.1			
0.1885	0.1872	546.4	755 7	0 4354	0.4325	237.3	720.7			
0.2275	0.2260	552.6	805.2	0.4559	0.4529	169.9	676.1			
0.2529	0.2200	546.3	827.1	0.435	0.4783	83.6	618.2			
0.202)	$x'=0.7553$, $H^{\rm E}_{-1}=505.7$ J mol ⁻¹									
0.0546	0.0177	156.0	103.5	0.4141	0 1342	512.0	700 1			
0.0340	0.0177	130.9	354.6	0.4141	0.1342	104.3	802.0			
0.1130	0.0374	302.1	388 3	0.4390	0.1463	494.3	707 A			
0.1287	0.0417	352.1	450.0	0.5152	0.1705	455.8	767.4			
0.1937	0.0513	282.0	439.0 505.7	0.5540	0.1793	373.4	704.3			
0.1652	0.0394	365.0	505.7 620.7	0.3993	0.1942	323.0	685.0			
0.2300	0.0852	407.9	710.9	0.0383	0.2009	237.0	627.0			
0.3110	0.1010	502.1	710.8	0.0802	0.2204	72.0	027.9 557.2			
0.3031	0.1165	320.0		0.7234	0.2344	12.9	557.2			
<i>x</i> ₁	<i>x</i> ₂	$\rho/g mL^{-1}$	$V_{\rm m,123}^{\rm E}/{\rm mL}~{\rm mol}^{-1}$	<i>x</i> ₁	<i>x</i> ₂	$\rho/g mL^{-1}$	$V_{m,123}^{\rm E}/{\rm mL}~{\rm mol}^{-1}$			
0.0230	0.0504	0.6603	0.1428	0.2913	0.3007	0.7097	-0.0036			
0.0427	0.9080	0.7848	-0.1004	0.2950	0.4014	0.7243	-0.1238			
0.0875	0.1060	0.6699	0.2118	0.2964	0.5085	0.7414	-0.2716			
0.0832	0.1976	0.6787	0.1881	0.3046	0.6051	0.7599	-0.4212			
0.0935	0.2985	0.6906	0.1539	0.3927	0.1036	0.6944	0.2063			
0.0874	0.4225	0.7054	0.0913	0.3941	0.2006	0.7065	0.0448			
0.1174	0.4987	0.7192	0.0022	0.4088	0.2897	0.7199	-0.0888			
0.1164	0.5916	0.7336	-0.0741	0.4005	0.4046	0.7363	-0.2625			
0.0993	0.6996	0.7503	-0.1361	0.4003	0.5035	0.7533	-0.4498			
0.1060	0.8008	0.7712	-0.2092	0.4931	0.1018	0.7029	0.1740			
0.1968	0.1996	0.6886	0.1477	0.5105	0.2912	0.7306	-0.2167			
0.1998	0.2957	0.7003	0.0736	0.5016	0.4028	0.7478	-0.4334			
0.1912	0.4060	0.7139	-0.0079	0.5980	0.1955	0.7253	-0.1107			
0.2004	0.5004	0.7289	-0.1190	0.6041	0.2970	0.7418	-0.3793			
0.1979	0.5986	0.7449	-0.2176	0.6987	0.1026	0.7217	0.0253			
0.2014	0.6995	0.7643	-0.3345	0.7956	0.1046	0.7315	-0.1060			
0.2957	0.0989	0.6858	0.2346	0.9025	0.0508	0.7339	-0.0632			
0.3079	0.1915	0.6975	0.1088							

Table 3 Excess molar enthalpies^a, $H_{m,123}^{E}$, densities, ρ , and excess molar volumes, $V_{m,123}^{E}$, at 298.15 K for the ternary mixture x_1 MTBE+ x_2 1-propanol+(1- x_1 - x_2)hexane

^aThree experimental series of measurements were carried out for the ternary compositions resulting from adding hexane to a binary mixture composed of x_i MTBE+ x_2 1-propanol, where x_2 =1- x_i .

$$Q_{m}^{E} = x(1-x)\sum_{i=1}^{n} A_{i} (2x-1)^{i-1}$$
(3)

where
$$Q_m^E$$
 is H_m^E (J mol⁻¹) or V_m^E (mL mol⁻¹), while
lower deviations for the mixture x1-propanol
+(1-x)hexane were obtained by fitting experimental
data of excess molar enthalpies to the equation intro-
duced by Myers and Scott [16],

$$H_{\rm m}^{\rm E}$$
 (J mol⁻¹) = $\frac{x(1-x)}{1+k(2x-1)}\sum_{i=1}^{n}A_i(2x-1)^{i-1}$ (4)

and excess molar volumes to the equation suggested by Brandreth *et al.* [17].

$$V_{\rm m}^{\rm E} \,({\rm mL}\,{\rm mol}^{-1}) = x(1-x)\sum_{\rm i=1}^{\rm n}A_{\rm i}\,(1-x)^{\frac{\rm i-1}{2}}$$
 (5)

The measured values of ternary excess properties $Q_{m,123}^{E}$, were correlated using an equation of the form:

$$Q_{m,123}^{E} = Q_{m,bin}^{E} + x_{i} x_{j} (1 - x_{i} - x_{j}) \Delta_{123}$$
(6)

where Δ_{123} was correlated using Morris *et al.* equation [18] for excess molar enthalpies.

$$\frac{\Delta_{123}}{RT} = (B_0 + B_1 x_1 + B_2 x_2 + B_3 x_1^2 + B_4 x_2^2 + B_5 x_1 x_2 + B_6 x_1^3 + B_7 x_2^3 + \cdots)$$
(7)

and the Nagata and Tamura equation [19] has been used in order to correlate adequately the experimental excess molar volumes:

$$\Delta_{123} = (B_0 + B_1 x_1 + B_2 x_2 + B_3 x_1^2 + B_4 x_2^2) \quad (8)$$

The parameters A_i and B_i were calculated using the unweighed least-squares method, with the degree of the polynomial previously optimized through the application of the *F*-test [20]. The uncertainty of the excess molar properties is estimated to be less than 1%. Figure 1 shows the experimental data of H_m^E and V_m^E obtained for the three involved binary systems. Isolines of $H_{m,123}^E$ and $V_{m,123}^E$ are plotted in Figs 2a and b, respectively. Figure 3 represents lines of constant ternary contribution, $x_1x_2x_3\Delta_{123}$, to the excess molar enthalpy and excess molar volume. Table 4 presents the

Fig. 1 Excess molar properties, $a - H_m^E$, $b - V_m^E$, of the binary mixtures: $\bullet - xMTBE+(1-x)hexane^a$, $\blacktriangledown - xMTBE+(1-x)l$ -propanol^b, $\blacktriangle - x1$ -propanol+(1-x)hexane, ^aexperimental data of V_m^E were taken from [2], ^bexperimental data of H_m^E were taken from [1]

	A_1	A_2	A_3	A_4	A_5	k	S		
		xMTBE+(1-x)1-propanol							
${}^{\mathrm{a}}H_{\mathrm{m}}^{\mathrm{E}}$ /J mol ⁻¹ $V_{\mathrm{m}}^{\mathrm{E}}$ /mL mol ⁻¹	2226.2 -2.6182	533.9 -0.1305	361.3 -0.3518	1073.5		_	3.6 0.0046		
			xM	TBE+ $(1-x)$ hexa	ane				
$H_{\mathrm{m}}^{\mathrm{E}}$ /J mol ⁻¹ ${}^{\mathrm{b}}V_{\mathrm{m}}^{\mathrm{E}}$ /mL mol ⁻¹	1534.2 1.6830	-96.5 -0.0313		257.3	-166.3		2.8 0.0069		
			x1-pr	opanol+(1–x)he	exane				
$H_{\mathrm{m}}^{\mathrm{E}}$ /J mol ⁻¹ $V_{\mathrm{m}}^{\mathrm{E}}$ /mL mol ⁻¹	2187.1 5.4974	654.2 -18.4837	453.5 32.3331	-378.9 -30.1311	- 10.9492	0.7295	3.6 0.0017		
	B_0	B_1	B_2	B_3	B_4		S		
	x_1 MTBE+ x_2 1-propanol+ x_3 hexane								
$H_{\mathrm{m}}^{\mathrm{E}}$ /J mol ⁻¹ $V_{\mathrm{m},123}^{\mathrm{E}}$ /mL mol ⁻¹	3.6617 -10.2491	5.7921 3.8180	-12.0485 25.2953	-7.3426 3.4983	11.4712 -20.5942	_	5.7 0.0045		

values of the A_i and B_i parameters and their corresponding standard deviations.

Theoretical predictions

The UNIFAC group contribution model (in the versions of Larsen *et al.* [3], and Gmehling *et al.* [4]) has been employed to estimate excess molar enthalpies. Best accuracy for the ternary mixture was yielded by Gmehling version, with a 12% deviation from experimental data, *vs.* a 15% for Larsen version. Table 5 list the average percentage deviations of the excess molar enthalpies predicted by theoretical methods and the experimental values. These results are displayed graphically in Fig. 4.

The empirical expressions of Kohler [21], Jacob and Fitzner [22], Colinet [23], and Knobeloch and Schwartz [24], Tsao and Smith [25], Toop [26], Scatchard *et al.* [27], Hillert [28], and Mathieson and Thynne [29] were applied to estimate ternary properties from binary results. These methods can be divided into symmetric and asymmetric, depending on whether the assumption of the three binaries contributing equally to the ternary mixture magnitude is accepted or not. For the asymmetric equations [25–29],

Fig. 2 Isolines for the ternary system x_1 MTBE+ x_2 1-propanol+ x_3 hexane at 298.15 K; a – $H_{m,123}^{E}$ (J mol⁻¹) calculated with Eq. (7), b – $V_{m,123}^{E}$ (mL mol⁻¹), calculated with Eq. (8)

Fig. 3 Curves of constant ternary contribution, $x_1x_2x_3\Delta_{123}$; a – to the excess molar enthalpy $H_{m,123}^{E}$ (J mol⁻¹), b – to the excess molar volume $V_{m,123}^{E}$ (mL mol⁻¹), for x_1 MTBE+ x_2 1-propanol+ x_3 hexane at 298.15 K, correlated using Eqs (7) and (8), respectively

Fig. 4 Excess molar enthalpies for a – MTBE+(1-x)1-propanol, b – MTBE+(1-x)hexane, c – x1-propanol+(1-x)hexane, d – x_1 MTBE+ x_21 -propanol+ x_3 hexane at 298.15 K, — – fit of experimental data, — — – Larsen *et al.* model, — — – Gmehling *et al.* model

three different numberings of the components have been tested, in order to check the differences in the predicted values, and to find a rule to decide which ordering should be used in each case. MTBE, 1propanol or hexane were respectively named as 123. Deviations between experimental data and estimated values are shows in Table 6.

 Table 5 Average percentage deviations of excess molar enthalpies predicted by the theoretical models from the experimental data

System	Larsen/%	Gmehling/%
MTBE+1-propanol	37	43
MTBE+hexane	39	14
1-propanol+hexane	14	11
MTBE+1-propanol+hexane	15	12

Table 6	Mean d	leviations	from the	experiment	al values	obtained	with the	empirical	predictiv	ve method	ds. For t	he asymm	netric
	equatio	ns three n	umbering	gs of the cor	nponents	s have bee	en compa	red, in this	s order, 1	123, 231,	312		

	s/J mol ⁻¹			s/mL mol ⁻¹			
Kohler	85.4			0.0362			
Jacob-Fitner	103.7			0.0343			
Colinet	88.7			0.0358			
Knobeloch-Schwartz	36.0			0.0361			
Tsao–Smith	39.1 ^a	19.2 ^b	46.5 ^c	0.0612 ^a	0.1128 ^b	0.0343 ^c	
Тоор	101.6 ^a	41.3 ^b	128.4 ^c	0.0381^{a}	0.0538 ^b	0.0557 ^c	
Scatchard	120.3 ^a	41.6 ^b	130.0 ^c	0.0587^{a}	0.0538 ^b	0.0577 ^c	
Hillert	107.1 ^a	42.0 ^b	127.5 ^c	0.0385^{a}	0.0538 ^b	0.0553 ^c	
Mathieson-Thynne	110.8 ^a	75.2 ^b	118.6 ^c	0.0591 ^a	0.0430 ^b	0.0443 ^c	

^aorder 123, ^border 231, ^corder 312

Acknowledgements

This work was supported by Xunta de Galicia (XUGA PGIDT99PXI30103B).

References

- S. M. Cebreiro, M. Illobre, M. M. Mato, P. V. Verdes, J. L. Legido and M. I. Paz Andrade, J. Therm. Anal. Cal., 70 (2002) 251.
- 2 E. Mascato, L. Mosteiro, B. E. Cominges, M. M. Piñeiro and J. L. Legido, Personal Comunication, 16th European Conference on Thermophysical Properties, London, UK 2002.
- 3 B. L. Larsen, P. Rasmussen and A. Fredenslund, Ind. Eng. Chem. Res., 26 (1987) 2274.
- 4 J. Gmehling, L. Jiding and M. Schiller, Ind. Eng. Chem. Res., 32 (1993) 178.
- 5 CRC. Handbook of Chemistry and Physics, CRC Press 84th Ed. (2003–2004).
- 6 A. Pal and G. Dass, J. Chem. Eng. Data, 44 (1999) 1325.
- 7 B. Orge, M. Iglesias, A. Rodríguez, J. M. Canosa and J. Tojo, Fluid Phase Equilib., 133 (1997) 213.
- 8 M. I. Paz Andrade, Les Développements Récents de la Microcalorimétrie et de la Thermogenèse, 1st Ed.; CNRS, Paris 1967.
- 9 M. I. Paz Andrade, S. Castromil and M. C. Baluja, J. Chem. Thermodyn., 2 (1970) 775.
- 10 M. T. Lorenzana, J. L. Legido, E. Jiménez, J. Fernández, L. Pías, J. Ortega and M. I. Paz Andrade, J. Chem. Thermodyn., 21 (1989) 1017.

- J. L. Legido, M. T. Lorenzana, E. Jiménez, J. Fernández, A. Amigo and M. I. Paz Andrade, J. Sol. Chem., 19 (1990) 1095.
- 12 J. P. E. Grolier and G. C. Benson, Can. J. Chem., 62 (1984) 949.
- 13 J. A. Riddich, W. B. Bunger and T. K. Sakano, 1986, Organic Solvents, 4th Ed. Vol II, Wiley & Sons, New York.
- 14 IUPAC, Pure and Appl. Chem., 58 (1986) 1677.
- 15 O. Redlich and A. T. Kister, Ind. Eng. Chem., 40 (1948) 345.
- 16 D. B. Myers and R. L. Scott, Ind. Eng. Chem., 55 (1963) 43.
- 17 D. A. Brandreth, S. P. O'Neil and R. W. Missen, Trans. Faraday Soc., 62 (1966) 2355.
- 18 J. W. Morris, P. J. Mulvey, M. M. Abbott and H. C. Van Ness, J. Chem. Eng. Data, 20 (1975) 403.
- I. Nagata and K. Tamura, J. Chem. Thermodyn., 22 (1990) 279.
- 20 P. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill 1969.
- 21 F. Kohler, Monatsh. Chem., 91 (1960) 738.
- 22 K. T. Jacob and K. Fitzner, Thermochim. Acta, 18 (1977) 197.
- 23 C. Colinet, C. Thesis University of Grenoble, France 1967.
- 24 J. B. Knobeloch and C. E. Schwartz, J. Chem. Eng. Data, 7 (1962) 386.
- 25 C. C. Tsao and J. M. Smith, Chem. Eng. Prog. Symp. Series, 49 (1953) 107.
- 26 W. G. Toop, Trans. TMS-AIME, 223 (1965) 850.
- 27 G. Scatchard, L. B. Ticknor, J. R. Goates and E. R. McCartney, J. Am. Chem. Soc., 74 (1952) 3721.
- 28 M. Hillert, Calphad, 4 (1980) 1.
- 29 A. R. Mathieson and J. C. Thynne, J. Chem. Soc., (1957) 3713.